Leaky Pipes
Most people don’t realize water can be almost as destructive as fire if left undiscovered. Water can slowly make its way into your walls, floors, cabinets and foundations. This in turn could cost you thousands of dollars in wood rot, mildew, and structural damage. Just like people, your plumbing system needs regular checkups as well. Protect your home by letting our trained technicians inspect your home inside and out for leaks. One simple inspection could save you thousands. Call to schedule an appointment today.
Water Heater Repair & Replacement
Water Heaters are a wonderful modern convenience. They however can cause great destruction if not maintained properly. When a water heater bursts it can dump out large amounts of water causing damage to property and personal belongings. Rusty stains around the base and top could be signs of potential failure. Even more important is the temperature and pressure relief valve maintenance, this device alone keeps your water heater from becoming a ticking time bomb. The T&P valve should be checked and replaced yearly if necessary. Protect your family. Check your hot water system today. Call for an inspection and we will send out a trained technician to ensure your water heater is working properly.
Water Conservation
Plumbing
An engineering practice for individual residential water users is the installation of indoor plumbing fixtures that save water or the replacement of existing plumbing equipment with equipment that uses less water. Low-flow plumbing fixtures and retrofit programs are permanent, one-time conservation measures that can be implemented automatically with little or no additional cost over their life times (Jensen, 1991). In some cases, they can even save the resident money over the long term.
The City of Corpus Christi, for example, has estimated that an average three-member household can reduce its water use by 54,000 gallons annually and can lower water bills by about $60 per year if water-efficient plumbing fixtures are used (Jensen, 1991). Further support for this conclusion is provided below.
Low-Flush Toilets. Residential demands account for about three-fourths of the total urban water demand. Indoor use accounts for roughly 60 percent of all residential use, and of this, toilets (at 3.5 gallons per flush) use nearly 40 percent. Toilets, showers, and faucets combined represent two-thirds of all indoor water use. More than 4.8 billion gallons of water is flushed down toilets each day in the United States. The average American uses about 9,000 gallons of water to flush 230 gallons of waste down the toilet per year (Jensen, 1991). In new construction and building rehabilitation or remodeling there is a great potential to reduce water consumption by installing low-flush toilets.
Conventional toilets use 3.5 to 5 gallons or more of water per flush, but low-flush toilets (see figure above) use only 1.6 gallons of water or less. Since low-flush toilets use less water, they also reduce the volume of wastewater produced (Pearson, 1993).
Effective January 1, 1994, the Energy Policy Act of 1992 (Public Law 102-486) requires that all new toilets produced for home use must operate on 1.6 gallons per flush or less (Shepard, 1993). Toilets that operate on 3.5 gallons per flush will continue to be manufactured, but their use will be allowed for only certain commercial applications through January l, 1997 (NAPHCC, 1992).
Even in existing residences, replacement of conventional toilets with low-flush toilets is a practical and economical alternative. The effectiveness of low-flush toilets has been demonstrated in a study in the City of San Pablo, California. In a 30-year-old apartment building, conventional toilets that used about 4.5 gallons per flush were replaced with low-flush toilets that use approximately 1.6 gallons per flush. The change resulted in a decrease in water consumption from approximately 225 gallons per day per average household of 3 persons to 148 gallons per day per household a savings of 34 percent! Although the total cost for replacement of the conventional toilets with low-flush toilets was about $250 per unit (including installation), the water conservation fixtures saved an average of $46 per year from each unit’s water bill. Therefore, the cost for the replacement of the conventional toilet with a low-flush toilet could be recovered in 5.4 years.
Toilet Displacement Devices. Plastic containers (such as plastic milk jugs) can be filled with water or pebbles and placed in a toilet tank to reduce the amount of water used per flush. By placing one to three such containers in the tank (making sure that they do not interfere with the flushing mechanisms or the flow of water), more than l gallon of water can be saved per flush. A toilet dam, which holds back a reservoir of water when the toilet is flushed, can also be used instead of a plastic container to save water. Toilet dams result in a savings of 1 to 2 gallons of water per flush (USEPA, l991b).
Low-Flow Showerheads. Showers account for about 20 percent of total indoor water use. By replacing standard 4.5-gallon-per-minute showerheads with 2.5-gallon-per-minute heads, which cost less than $5 each, a family of four can save approximately 20,000 gallons of water per year (Jensen, 1991). Although individual preferences determine optimal shower flow rates, properly designed low-flow showerheads are available to provide the quality of service found in higher-volume models.
Whitcomb (1990) developed a model to estimate water use savings resulting from the installation of low-flow showerheads in residential housing. Detailed data from 308 single-family residences involved in a pilot program in Seattle, Washington, were analyzed. The estimated indoor water use per person dropped 6.4 percent after low-flow showerheads were installed (Whitcomb, 1990).
Faucet Aerators. Faucet aerators, which break the flowing water into fine droplets and entrain air while maintaining wetting effectiveness, are inexpensive devices that can be installed in sinks to reduce water use. Aerators can be easily installed and can reduce the water use at a faucet by as much as 60 percent while still maintaining a strong flow. More efficient kitchen and bathroom faucets that use only 2 gallons of water per minute–unlike standard faucets, which use 3 to 5 gallons per minute–are also available (Jensen, 1991).
Pressure Reduction. Because flow rate is related to pressure, the maximum water flow from a fixture operating on a fixed setting can be reduced if the water pressure is reduced. For example, a reduction in pressure from 100 pounds per square inch to 50 psi at an outlet can result in a water flow reduction of about one-third (Brown and Caldwell, 1984).
Homeowners can reduce the water pressure in a home by installing pressure-reducing valves. The use of such valves might be one way to decrease water consumption in homes that are served by municipal water systems. For homes served by wells, reducing the system pressure can save both water and energy. Many water use fixtures in a home, however, such as washing machines and toilets, operate on a controlled amount of water, so a reduction in water pressure would have little effect on water use at those locations.
A reduction in water pressure can save water in other ways: it can reduce the likelihood of leaking water pipes, leaking water heaters, and dripping faucets. It can also help reduce dishwasher and washing machine noise and breakdowns in a plumbing system.
A study in Denver, Colorado, illustrates the effect of water pressure on water savings. Water use in homes was compared among different water pressure zones throughout the city. Elevation of a home with respect to the elevation of a pumping station and the proximity of the home to the pumping station determine the pressure of water delivered to each home. Homes with high water pressure were compared to homes with low water pressure. An annual water savings of about 6 percent was shown for homes that received water service at lower pressures when compared to homes that received water services at higher pressures.
Gray Water Use. Domestic wastewater composed of wash water from kitchen sinks and tubs, clothes washers, and laundry tubs is called gray water (USEPA, 1989). Gray water can be used by homeowners for home gardening, lawn maintenance, landscaping, and other innovative uses. The City of St. Petersburg, Florida, has implemented an urban dual distribution system for reclaimed water for nonpotable uses. This system provides reclaimed water for more than 7,000 residential homes and businesses (USEPA, 1992).
Landscaping
Lawn and landscape maintenance often requires large amounts of water, particularly in areas with low rainfall. Outdoor residential water use varies greatly depending on geographic location and season. On an annual average basis, outdoor water use in the arid West and Southwest is much greater than that in the East or Midwest. Nationally, lawn care accounts for about 32 percent of the total residential outdoor use. Other outdoor uses include washing automobiles, maintaining swimming pools, and cleaning sidewalks and driveways.
Landscape Irrigation. One method of water conservation in landscaping uses plants that need little water, thereby saving not only water but labor and fertilizer as well (Grisham and Fleming, 1989). A similar method is grouping plants with similar water needs. Scheduling lawn irrigation for specific early morning or evening hours can reduce water wasted due to evaporation during daylight hours. Another water use efficiency practice that can be applied to residential landscape irrigation is the use of cycle irrigation methods to improve penetration and reduce runoff. Cycle irrigation provides the right amount of water at the right time and place, for optimal growth. Other practices include the use of low-precipitation-rate sprinklers that have better distribution uniformity, bubbler/soaker systems, or drip irrigation systems (RMI, 1991).
Xeriscape Landscapes. Careful design of landscapes could significantly reduce water usage nationwide. Xeriscape landscaping is an innovative, comprehensive approach to landscaping for water conservation and pollution prevention. Traditional landscapes might incorporate one or two principles of water conservation, but xeriscape landscaping uses all of the following: planning and design, soil analysis, selection of suitable plants, practical turf areas, efficient irrigation, use of mulches, and appropriate maintenance (Welsh et al., 1993).
Benefits of xeriscape landscaping include reduced water use, decreased energy use (less pumping and treatment required), reduced heating and cooling costs because of carefully placed trees, decreased storm water and irrigation runoff, fewer yard wastes, increased habitat for plants and animals, and lower labor and maintenance costs (USEPA, 1993).
More than 40 states have initiated xeriscape projects. Some communities use contests and demonstration gardens to promote public awareness. El Paso Water Utilities and the Council of El Paso Garden Clubs sponsor an annual “Accent Sun Country” contest. The contest spotlights homes that have water-conserving landscapes consisting of plants and grasses that require only a minimum of supplemental water and yet beautify the homes. The winning entries are publicized, and cash prizes are awarded. People are invited to tour the grounds to get ideas on how they, too, can save water, time, and money while maintaining an attractive landscape (RMI, 1991). The offices of the Southwest Florida Water Management District in Tampa and Brooksville offer free xeriscape tours every month. The tours begin with a slide show on the principles of xeriscape and continue with a walking tour of water-saving landscaping (Xeriscape tours, 1993).